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FOREWORD 

This report describes a portion of the results obtained on 

NASA Grant NSG 3044.  This work was done under subcontract to the 

University of Illinois, Urbana, with Prof. S.S. Wang as the Prin- 

cipal Investigator.  The prime grantee was the Massachusetts Insti- 

tute of Technology, with Prof. F.J. McGarry as the Principal Inves- 

tigator and Dr. J.F. Mandell as a major participant.  The NASA - 

LeRC Project Manager was Dr. C.C. Chamis. 

Efforts in this project are primarily directed towards the de- 

velopment of finite element analyses for the study of flaw growth and 

fracture of fiber composites.  The analysis of such problems using 

three-dimensional analyses may be limited by the presence of very 

localized, high stress gradients as occur at free edges.  The work 

described in this report is a theoretical investigation of such ef- 

fects resulting from thermal or hygroscopic loading.  The results 

given here are for thermal effects, but the same treatment also ap- 

plies to hygroscopic effects, differing only by the expansion co- 

efficient used.  Analogous results to those given here, but for hy- 

groscopic loading, may be found in the following papers: 

(1) S.S. Wang and I. Choi, AIAA paper 80-0713-CP, 21st Proceedings 

of AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Mate- 

rials Conf., Seattle, WA, 1980; also to appear in AIAA Journal, 

November, 1982. 

(2) S.S. Wang and I. Choi, in Developments in Composite Materials 

and Structures, J.R. Vinson, ed., ASME, p. 315 (1980). 



ABSTRACT 

Thermal stresses near geometric boundaries of fiber-reinforced composite 

laminates play an important role in controlling complex failure modes and 

ultimate performance of composite materials in severe thermal environment. 

This paper presents an investigation of boundary-layer thermal stress singularity 

and distributions in composite laminates.  Based on the theory of anisotropic 

thermoelasticity, a system of coupled governing partial differential equations 

is obtained.  Edge boundary conditions and interface continuity conditions lead 

to a transcendental characteristic equation for determining thermal stress 

singularity at the laminate boundary.  Complete thermal boundary-layer stress 

and displacement solutions are obtained by an eigenfunction expansion method 

in conjunction with a boundary collocation procedure.  The thermoelasticity 

solution in the region away from the singular domain is found in excellent 

agreement with existing approximate numerical results. As the edge is approached, 

the singular terms control the near-field behavior of thermal boundary-layer 

stresses. Results are presented for the cases of various angle-ply graphite-epoxy 

laminates with [6/-6/-8/6] fiber orientations.  Thermal boundary-layer thickness 

is defined by considering strain energy density distribution along ply interface. 

The thermal boundary-layer thickness is shown to depend on the anisotropy of 

individual lamina, ply thermomechanical properties, and relative thickness of 

adjacent layers. 



1.  INTRODUCTION 

The response of a composite laminate near its geometric boundaries sub- 

jected to severe thermal and other environmental loading has attracted much 

attention recently, since failure of composite materials is frequently initiated 

at the boundaries.  The thermal stress field in the vicinity of the laminate 

boundaries, which may be primarily responsible for strength degradation and 

failure of composites, has been investigated by several researchers using 

different approximate methods [1-4]. Approximate solutions for the thermal 

boundary-layer problem have revealed several unusual features.  Interlaminar 

stresses near a traction-free boundary of a composite laminate subjected to a 

uniform temperature change have been found to be very high and inherently 

three-dimensional.  It has also been reported that the high thermal stress is 

confined within a localized region of several laminar thicknesses from the 

edge and that In the boundary-layer region they cannot be assessed accurately 

by the classical lamination theory [5,6].  The behavior of this highly stressed 

boundary-layer region is of great importance in controlling complex failure 

modes, and ultimate performance of the composites. Understanding the fundamental 

nature of boundary-layer thermal stresses is essential to the failure analysis, 

design, and processing optimization of composite materials. 

While all previous numerical approximate solutions indicated an unbounded 

trend of boundary-layer thermal stresses and postulated possible existence of 

a stress singularity at the edge, the search for the order or strength of the 

stress singularity has been unsuccessful.  No information concerning the exact 

order of the boundary-layer stress singularity has been reported yet, to the 

authors' knowledge.  The apparent difficulty may result from the complicated 

nature of the problem such as the thermomechanical anisotropy of each individual 



fiber-reinforced lamina, the geometric discontinuity, and the abrupt change of 

material properties through the laminate thickness direction.  Since the 

thermal boundary-layer effect is localized in nature, it is necessary to 

determine the exact order of the laminate edge stress singularity so that 

complex thermal response in the vicinity of laminate boundaries can be studied 

more accurately.  This paper presents a rigorous theoretical study of thermal 

boundary-layer stress singularity and distributions in composite laminates 

subjected to uniform thermal loading. 
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2.  FOKMULATION 

2.1 Basic Equations 

Consider a general composite laminate composed of fiber-reinforced 

plies subjected to mechanical and thermal loading, as shown in Fig. 1.  Denote 

the constitutive equation of each individual ply by the Duhamel-Neumann form 

of generalized Hooke's law in contracted notation as 

e. = S.. o. + a.   AT,    (i,j = 1,2,3, 6), (1) 
i   iJ 3 i 

where the repeated subscript indicates summation; S.. is the compliance tensor; 

a., the thermal expansion coefficient, and AT, the change of temperature. The 

engineering strains, e., in Eq. 1 are defined in a Cartesian coordinate system 

by 

_   _ 3u _   _ il P=P=3w 
El " Ex " 3x' E2 " £y  3y' E3   z  3z' 

.     3w . 3v _ 3w  3u      _ „   _ 3u  3v   .  . 
E4 = 2£yz = 37 + 3?»    E5 = 2exz " 3x" + 3?'   £6 " 2exy " 3y + 3x'   (2) 

where u, v and w are displacement components.  The stresses, o±,  are 

defined in an analogous manner. 

The composite laminate considered here has a finite width and is sub- 

jected to a uniform axial extension, e, along the z-axis and a uniform temper- 

ature change, AT. The composite is assumed to be sufficiently long that, in 

the region far from the end, the end effect is neglected by virtue of Saint 

Venant's principle.  Consequently, stresses in the laminate are independent 

of the z coordinate.  The special case where e  vanishes identically corresponds 

to the well known generalized plane deformation [7]. Under these assumptions, 

equations of equilibrium without body force read 

3a   3x 



3T    Sa 

9x    9y 

3x    9T 

-^+-^-0. (3c) 3x    3y 

Integrating Eq. 1 with the aid of Eq. 2, one can obtain u, v and w as 

2 3W 
U = " V f +  (S5j   °j  + a5 AT " IT*   Z + V*'^ • (4a) 

2 3W 
v = - T£+ (S4J aj+ \AT - ir>z + vo(x'y)> (4b) 

w = D z + W  (x,y), (4c) 

where 

D =  S„.   a.  + a.  AT, (5) 
3]     ] 3 

and U , V and W are arbitrary functions of x and y only, 
o  o     o 

Following the procedure in [7], it can be shown after some mathematical 

manipulation that general expressions for the displacements and the stress 

component a    have the following forms: 

u = - 2" A S  z2 - A yz + U(x,y) + u>2  z - (ß^  y + UQ,        (6a) 

v = - _- A S  z2 + A xz + V(x,y) + u x - w z + VQ,        (6b) 

w = (A x + A2 y + A3)S33 z + W(x,y) + o^ y - ü>2 x + WQ,      (6C) 

0z = Ax x + A2 y + A3 -(S3. a.  + c*3 AV/S^,       (j = 1,2,4,5,6). (6d) 

The unknown functions, U, V and W, depend on x and y only, and can be shown 

easily to obey the following relationships: 

1^- = Sr a.  +  S13(A1 x + A2 y + A3) + ax AT, (7a) 



where 

9V 
9y =  S2j   aj + S23.(A1 x + A

2 y + A
3)  + a

2 
AT> (7b) 

9W 
97 -  S5j   °J  + S53(A1 x + A2 y + A3)  + A4 y + a5  AT, (7c) 

3W 
■5 S. .   a.  + S/0(A.   x + A.  y + A_)   - A.   x + a.   AT, (7d) 
9y4jj 43    1 2 3 4 4 

911        3V        ~ ~ 

97 + K ■ S6j  °j  + S63(A1 X + A2 y + V  + a6 AT' (7e) 

(j  = 1,2,4,5,6). 

S..  = S..   - S.„  S._/S„_, (8a) 
xj xj i3    j3    33' 

ai = ai " a3 Si3/S33      (i'j = i»2»4»5'6)-  (8b> 

It is obvious that the constants, u , v , w and co.(i = 1,2,3), in Eqs. 6a-6d 
000       X       >>'>      -1 

characterize the rigid body translation and rotation of the solid.  A and A„ 

represent the bending of the laminate in the x-z and y-z planes, respectively. 

A characterizes the uniform axial extension of the composite laminate, and A,, 

the relative angle of rotation about the z-axis. 

2.2 Governing Partial Differential Equations3  and Boundary and End Conditions 

Introducing Lekhnitskii's stress functions, F and V3   such that 

92 F 
CTx = 9y2' 

92 F 
CTy " 9x2 » T   = ■ 

xy 
92F 
9x 3y» 

_ 9^ 
xz  9y' 

9"? 
yz    9x 

(9a-e) 

one can show that the equations of equilibrium are satisfied identically. 

Eliminating U and V from Eqs. 7a, 7b and 7e, and W from Eqs. 7c and 7d, one 

obtains the following system of governing partial differential equations: 



L3 F + L2 * - " 2A4 + Al S34 " A2 S35 " Hl AT' 

L4 F + L3 V = - H2 AT, 

(10a) 

(10b) 

where L„, L_, L, , H, , and H„ are linear differential operators defined as 
2  3  4  1      I 

L„ = S,, ■*-*■-  2S + S„ 2 " a44 3x2 " "45 3x 9y 
T ü55 ay2» 

(11a) 

L„ = 

L, = S 

- S24 £? + (S25 + S46>äx^y- " (S14 + S56)äx^2 + hs  3yT'  (llb) 

+ (2S10 + sLh 
a*     „:       a4     . ,„:     . :   x    31* - 2S 22 d^  " "26 9x3 9y 

T ^"12 T ü66y3x2 3y2 

2S + S, 16 3x 3y3   11 3yt' 

and 

H, = 

H„ = 

~  3   ~  3 
- a. 1- ac —, 4 3x   5 3y 

2 " a2 3x2  a
6 3x 9y 

+ ai 9y2 

(lie) 

(lid) 

(He) 

Now consider boundary conditions on the lateral surfaces and at the ends 

of the laminate strip. Assuming that the lateral surfaces are free from sur- 

face tractions, one may have the following conditions: 

and 

a    n + x  n = 0, 
xx   xy y 

T  n + a    n  = 0, 
xy x   y y 

T  n + T  n = 0, 
xz x   yz y 

(12a) 

(12b) 

(12c) 

where n and n denote the directional cosines of the outward unit normal on 
x     y 

3B as shown in Fig. 2.  The conditions at the ends of the composite laminate 

may be obtained from the statically equivalent loading as 



7 

" ■ 

x  dx dy = 0 
xz.    J (13a) 

B 

» • 

, • 
T  dx dy = 0, 
yz 

B 

(13b) 

* • 
a dx dy = P , 
z        z 

(13c) 

* B 

■ 
» 

a y dx dy - M , 
Z               X 

(13d) 

B 

» * 

■ 

a x dx dy = M , 
z          7 

B 

(13e) 

. 
■ 

(T  X - T  y) dx dy = M . 
J   yz     xz J                        t 

(13f) 

B 

at z = ±L, where P , M , M , M are the applied axial force, bending 
z  x  y  t 

moments, 

and twisting moment, respectively. 

2.3 Interface Continuity Conditions 

Consider a portion of the laminate composed of two different fiber- 

reinforced laminae, as shown in Fig. 2.  Stress functions of Eqs. 9a and 9b 

must be defined for each ply.  Assuming that the plies are perfectly bonded 

along the interface 8B , one can immediately establish the continuity con- 

ditions of the stress and displacement along the interface between the kth and 

(k+l)th plies as the following: 

♦. o(k) n(k) + <k) (k) = _ 0(k+i) n(k+i) _ T(k+i) n(k+i) 
xxxyy      xx      xyy 

(14a) 

T(k) n(k)   (k)  (k) „ _ T(k+1) n(k+l) _ a(k+l) n(k+l) 
xy  x     y   y      xy    x      7     7 

(14b) 

(k) n(k) + (k)  (k) = _ T(k+1) n(k+l) _ x(k+l) n(k+l) 
xz  x     yz  y      xz    x      yz    y   ' 

(14c) 



and 

u(k)=u(k+1), (15a) 

v(k)=v(k+1), (15b) 

w(k)=w<k+1). (15C) 

By using divergence theorem, it can be readily seen that Eqs. 13a and 13b are 

satisfied identically by virtue of 3c, 12c and 14c.  Substituting the displace- 

ments, Eqs. 6a-c, into the above continuity conditions, Eqs. 15a-c, one finds 

that the unknown constants for two adjacent layers in Eq. 6 are related by 

(k) = cw-i)   v(k) m   (k+i)   w(k) = w(k+i) 
o     o   '     o     o o     o 

„<«,«, - U*+1)-»f+1>
y, V

(k)-h.<k >x - V(k+1)-h,<k+1)x, W(k> - W*+1>, (16f-h) 
J J J J 

and 

Aik> S33)=Af+1) S33+1)'        (i- 1.2.3) (161) 

A<k)=A<k+1). (16 j) 
4     4 



3.  METHOD OF SOLUTION 

The complex governing differential equations and boundary conditions 

formulated in the previous section may be simplified considerably as 

appropriate loading conditions and geometric symmetry are taken into con- . 

sideration. For simplicity and without loss of generality, the following 

geometric and environmental conditions are introduced for the present thermal 

boundary-layer stress problem: 

(a) the temperature change AT is constant and uniformly distributed 

throughout the laminate, and there is no external mechanical loading applied; 

(b) the interface is a straight line and meets the traction-free edge of 

the composite laminate by a right angle. 

Under these assumptions the governing differential Eqs.lOa and 10b may 

be simplified as 

L3 F + L2 ¥ = - 2A4 + A.JL S.^ - A2 S^, (17a) 

(17b) [h¥ + V   = °' 

with boundary and end conditions, 

a=T=x=0, on x = 0,(18a-c) 
x   xy   xz 

a    dx dy = 
z 

a    x dx dy = 
z 

a    y dx dy = 0,    on B,     (19a) 
z 

(x  X - T y)dx dy = 0, on B.     (19b) x yz     xz-7    J 

B 

The interface continuity conditions of tractions and displacements may be ex- 

pressed as the following: 
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a (k) = a (k+l)     T(k) = T(fcf1) T(k) = T(k+l) 
y     y xy    xy yz    yz 

U(k) = U(k+1),    V(k)+4
k) x = V(k+1)+4

k+1) x,    W(k) = W(k+1), (20b) 

along y = 0, as the original of the coordinate system is moved to the free edge. 

3.1 Homogeneous Solution 

The simplified governing differential equations, Eqs. 17a and 17b, are 

coupled, linear partial differential equations with constant coefficients re- 

lated to the anisotropic thermomechanical elastic constants of each composite 

lamina.  The general solution consists of a homogeneous solution and a par- 

ticular solution depending on geometric, loading, and boundary conditions of 

the problem under consideration.  Lehknitskii has shown [7] that the homo- 

geneous solution of the above mentioned system of governing partial differential 

equations has the general form 

6 
F(x,y) = Y  F (x + u y), (21a) 

k=l fc     K 

6 
f(x,y) = I \  F^(x + uk y), (21b) 

k=l 

where the prime (') in Eq. 21b denotes differentiation of the function 

F (x + u, y) with respect to its argument, and the coefficients u, are the 

roots of the following algebraic characteristic equation: 

A4(M) A2(y) - A2(P) = o, (22a) 

and 

with 

\ = - W'VV - - W/£3(V' (22b) 

2   oc  .. _, c (22c) 
VP) = S55 M " 2S45 y + S44' 
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Vy) = S15 p3 -(S14 + S56)y2 +(S25 + V P " S24' (22d) 

VP) = Sll y4 " 2S16 y3 +(2S12 + S66) y2 " 2S26 y + ^22*     (22e) 

It has been shown [7] that Eq. 22a cannot have a real root.  Thus the roots y^ 

appear as complex conjugates, and F, are analytic functions of the complex 

variables Z, = x + u, y.  Substituting the expressions of F(x,y) and V(x,y) 

in Eqs. 21a and 21b into Eqs. 9a-e, the homogeneous components of the stress 

a.  may be expressed in terms of F, (Z, ) as 
•*■ K.  K. 

0xh) = I    ykFk(V' (23a) 
k=l 

6 
a<h) - I    F"(Z ), (23b) 
y  k=i k fc 

(h) = _ 6 
X     Y n, F"(Z.), yz      ^  k kN k ' 

(23c) 

T» " j, "k\Fk<V- (23d) 
k=l 

6 

V-'J^^V- (23e) 

The expressions for displacement components may be obtained directly from 

Eqs. 7, 10 and 23 with omission of terms which are to be included in 

the particular solution.  Hence, one has 

u(h) = I    Pk^(Zk)> (24a) 
k=l 

v(h) ■ I qkFk(V' (24b) 
k=l 
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and 

w(h) = I    tkF£(Zk), (24c) 
k=l 

where 

Pk = Sll ^ + S12 " S14 \ + S15 \ "k " S16 V (24d) 

\ "  hi \ + S~22^k " *24 V\ + *25 \ " *26' (24e) 

Ck "  ~SU \ + V\ ~ KA \f\ + *45  \ - V (24f) 

We now choose the form of F, (Z, ) as k k 

Fk(Zk) = Ck z£
+2/[(6+l)(6+2)], (25) 

where C and 6 are arbitrary complex constants to be determined later.  Sub- 

stituting Eq. 25 into Eqs. 23 and 24 gives 

axh)= J[Ck^kZk + Ck+3^> <26a> k=l 

*yh)= vV
CkZk + Ck+3^> 

(26b) J
 k=l 

Tyz)  = " ky
Ck\Zk + Ck+3\^' <26c> 

3 

*™- iic*\\4 + %+3\\K]> (26d) 
k=l 

T£} = - Vck \ <+ ck+3 \ K*> (26e) 
k=l 

and 

u(h)  =    I   [Ck pk z£+1 + Ck+3 Fk z£+1]/(«+l), (27a) 
k=l 
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v(h) = i [°k \ zk+1 + ck+3 \ K+1v«+i) > <27b> k=l 

w(h) - X [c* fck zk+1 + V3 \ K+1]/ (6+1) • <27c> k=l 

where the overbar denotes the complex conjugate of the associated variable. 

The homogeneous solutions for the stress and displacement shown in 

Eqs. 26 and 27 are required to satisfy homogeneous boundary conditions 

and interface continuity conditions, i.e., Eqs. 18 and 20. This leads to a 

standard eigenvalue problem, which results in a complicated transcendental 

equation for determining the value of 6.  By taking the complex conjugate 

of Eqs. 26 and 27, it is readily seen that 6 always appear as pairs of 

complex conjugates. Thus the stresses and displacements can be made real by 

superposing the conjugate solutions. It is noted that a similar method of 

extracting the real function for an isotropic material case was discussed by 

Theocaris [8] who assumed the stress function including both 6 and 6 in the 

formulation.  It is also noted that, due to positive definiteness of 

strain energy of an elastic body, the value of 6 bounded by -1 < Re[6 ] < 0 
m m 

characterizes the order of singularity of the boundary-layer stress field in 

the composite laminate.  It has been found in a related paper [9] that there 

is only one real 6 which meets this condition in the singular boundary-layer 

stress problem.  Detailed information on the edge-stress singularity has been 

given in Reference 9. 

After the eigenvalues, 6 , are determined, the stress and displacement 

may be expressed in terms of the resulting eigenfunctions, f.  and g. , as 

0{h) = E dm 
f
im

(x'y; 6J <* = 1,2,4,5,6),        (28a) 
m 
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uih) = ^ dm 8im(x'y; V'        (j = 1'2'3)' <28b> J    m    J 

where the unknowns d are real, and f.  and g.  denote known eigenfunctions m im    °jm ö 

corresponding to the m-th eigenvalue 6 . 

3.2 Part-iculca> Solution 

The particular solution for the problem may be sought in the form of 

polynomials as 

F^p (x,y) = a, x3 + a„ x2 y+ a0 xy
2 + a. y3 +a,. x2 + a. xy + a,y2,       (29a) 

1     /       J q-     J     D     / 

^(p)(x,y) = a8x
2+a9xy + a10y

2+a11x + a12y, (29b) 

where a. are arbitrary constants to be determined.  It is seen that Eq. 17b 

is satisfied identically and that Eq. 17a provides the following relation for 

each ply: 

-6S24 ax + 2(S25 + S46)a2 - 2(S14 + ^^3 

+ 6S15 a4 + 2S44 ag - 2S45 ag +  28^ a^ 

= -2A4 + A±  S34 - A2 S35. (30) 

Substituting Eqs. 29a and 29b into Eqs. 7 and 9 gives 

cTP' = 2a0 x + 6a. y + 2a,, (31a) 
x      3      4      7 

o^p) = 6a x + 2a2 y + 2a , (31b) 

Tyz = " 2ag x - a9 y - an, (31c) 

Txz} = a9 X + 2a10 y + *12> <31d> 

Txy° = - 2a2 x - 2a3 y - a6> (31e) 
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V." Ell X + E12 y + E13' (32a) 

^7-=E21x + E22y + E23, (32b) 

^"=   <*41 " A4) x + E42 y + E43, (32c) 

^T = E51 X +  (E52 + V  ? + E53> (32d) 

3TT
(
P)      av(p) 

where 

E._   = 2S._   a, + 6S._ a,   - 2S..   aß + S,q aQ - 2S  ,  a    + S      A  , (33a) 
jl ]1    3 j2    1 ]4    8 j5    9 jo    2        j3    1 

E., = 6S#1   a.  + 2S.„  a.  - S..   a. + 2S.,.  ain - 2S.,  a. + S.„ A., (33b) 
j2 jl    4 j2    2        j4    9 j5    10 ]6    3        j3    2 

E.„ - 2S.,   a, + 2S._ a,.  - S..   ain   + S.,  an     - S.,  a.  + S      A    + a    AT.(33c) 
j3 ]1    7 j2    5        j4    11 j5    12        jb    6 j3    3        j 

Integrating Eqs.   32a-e with the aid of Eq.   30,  one can obtain 

U(p) = \ En x2 + E12 xy + E13 x + |(E62  - E^)   y2 + \ E^ y, (34a) 

V(P)= E21 xy + \ E22 y2 + E^ y + ^(E^ - E^)  x2 + \ E^ x, (34b) 

W(P)= \ E51 x
2 + (E52 + A4) xy + E53 x + ^ E42 y

2 + E43 y. (34c) 

Thus the particular solution for the displacement can be written as 

u(p)= - jA1 S33 z2 - A4 yz + UCp)(x,y) + ü>2 Z - ^ y + UQ, (35a) 

v(p) =-|A2 S33 Z
2
 + A4 xz + V

(p)(x,y) + ü>3 x - ü^ z + VQ, (35b) 

w(p)= (Ax x + A2 y + A ) S33 z + W(p) (x,y) + o^ y - u>2 x + WQ .       (35c) 
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Equations 31 and 35 are required to satisfy the boundary conditions, Eqs. 18a-c, 

and the interface continuity conditions, Eqs. 20a-b of the current problem. 

This leads to the establishment of the following relations 

(nO m  a(») = a(m) = a(m) = a<j») = a<m) = ^ (m = k> k+1) (36a) 
a3 

(k) _  (k+1)   (k) _  (k+1)   (k) _  (k+1) 
al  " al   ' a2  " a2   ' a5  " a5 

(k) m     (k+1)   (k) =  (k+1) 
a8    a8   ' all   all  ' Ubb t; 

(k) _ (k+1)  (k) _ (k+1)  (k)   (k) _ (k+1)   (k+1) 
Ell " Ell  ' E13 " E13  ' E61 " E12 " E61   " E12  (36g_l) 

1 (k)   (k) _ 1 (k+1)   (k+1)   (k) _ (k+1)   (k) _ (k+1) 
2 E63 + "3  "2 E63   + W3   ' E51 " E51  ' E53 " E53  *   t36^1) 

By examining Eqs. 16, 30 and 36, it is observed that there are 44 unknowns (in- 

cluding the unknown rigid-body translations and rotations) related by 34 linear 

algebraic equations.  Solving these equations, there remain ten unknowns (for 

example, A.  , u , v , w and a). ) which may be determined by Eqs. 19a-b and 
x    o  o  o     x '' 

the boundary conditions other than those on the traction-free edges. 

3.3 Complete Solution 

Now the complete solution for the thermal boundary-layer stress problem 

can be written as 

ai = aih) + °iP) (i = i»2'4'5'6) > <37a> 

u = ujh) + ujp) (j = 1,2,3) , (37b) 

where a.     , u.  and a.     ,  u.  are given by Eqs. 28a-b and Eqs. 31, 35, 

respectively.  The solution for the stress, Eq. 37a, satisfies identically 

the boundary conditions, Eqs. 12a-c, of the free-edge surface  9B . Along 

9B  (8B = 8B - 3B ), residual stresses appear due to the particular 
S     S " 
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solution being posed in the previous section.  The residual stress can be 

counterbalanced by the homogeneous solution; thus,  on 3B , one obtains s 

a(h) n    + x(h) n    - - a(p) n    - t(p) n  , (38a) 
xxxyy xxxyy 

x(h)n    +a
(h)n    - - x(p)  n    - a(p)  n   , (38b) 

xyxyyxyxyy 

x(h)  n    + x(h)  n    = - x(p)  n    - T(p)  n . (38c) xz      x        yz      y xz      x        yz      y 

Without orthogonality among eigenfunctions, Eqs. 38a-c may be satisfied 

numerically in a least square sense through a boundary collocation method 

by truncating the eigenfunction series.  It is noted that the particular 

solution is coupled with the homogeneous one through the end conditions, 

Eqs. 19a-b.  Thus by matching Eqs. 38a-c with the aid of Eqs. 19a-b, one can 

determine all the unknowns explicitly.  To this end, the expressions for a z 

may be obtained from Eqs. 6d and 37a as 

a(h) = - S„. afh) /S„      (j=l,2,4,5,6), (39a) 

a(p) = A, x + A0 y + A_ - (S,. af
p) + a, AT)/S„,. (39b) 

z     1     I 3 jj  j     J     JJ 

Complete expressions for the displacement field can be written explicitly in 

a similar manner. 
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4 . NUMERICAL EXAMPLES AND DISCUSSION 

For illustration, symmetric angle-ply composite laminates with [±8]  ori- 

entations are studied.  Thermal loading in the form of a uniformly distributed 

temperature change is considered.  The particular laminate configuration and 

fiber orientation are chosen because approximate numerical solutions for this 

problem are available in the literature for comparison.  Each individual lamina 

is assumed to be high-modulus graphite-epoxy with the following elastic constants: 

En = E22 = 2.1 x 10
6 (psi),  E  = 20 x 106 (psi), G±2 = G±3  = G^  = 0.85 x 106 

(psi), v12 = v13 = v?3 = 0.21, a±  = a2  = 16 x 10~6 (/°F),  a3 = 0.2 x 10~
6 (/°F), 

where the subscripts, 1, 2 and 3, refer to transverse, thickness, and longitu- 

dinal directions of the individual ply, respectively.  The S.. and a. are 

evaluated by using these material constants, and the following relationships 

can be established readily: 

S^p = 0  (j=l,2,3,5,6);       S^} = 0  (1=1,2,3,5; 3=1,2); 

sf^)=sf?)  (i,j <; 3); sf^-sf?5  (j=4,5,6);  S?"P=-sf2)  (i,j > 4 and i t  j); 

i<»*™    0-1,2);  S«>^«>- 0 W-1.2), ~a™-~4»;    i<»-^<«.     (40) 

4.1 Symmetry Conditions and Further Simpliaations 

The geometric and lamination symmetry conditions lead to the following 

relationships: 

U(x,y) = U(x,-y),  V(x,y) = -V(x,-y),  W(x,y) = W(x,-y), (41a-c) 

U(x,y) =-U(-x,y),  V(x,y) = V(-x,y),  W(x,y) =-W(-x,y). (42a-c) 

Equations 41a-c and 42a-c may be written in equivalent forms as 

U  (0,y) = V  (0,y) = W (0,y) = 0, (43) 
>y      »x      >y 

U  (x,0) = V  (x,0) = W (x,0) = 0. (44) 
>y     >x     >y 

The relations provided by Eqs. 7 and 40 and the symmetry conditions given in 

Eqs. 41 and 42 suggest that 
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(1) = A(2) . A: = o (1=1,2,4), (45) 

and that a   ,  a   ,  a    and T  are symmetric with respect to the x and y axes 
x  y  z     xz 

and T  and T  are antisymmetric with respect to the x and y axes.  Thus, 
xy     yz 
(g) 

only A^  remains to be determined and only one-quarter of the laminate needs 

to be considered. 

By using Eqs. 40a and 40b, one can easily show that 

«W- - *(2) a5  - a5 

0) (1) _ ..(2) = 0), 

JP = A<2> 

fs(D       ;(D 
!S3_ A(D + !5_ 
:(D A3 + :(i) AT 

52 52 

(46) 

(47) 

(48) 

and all other unknowns vanish.  Thus, the particular solution takes the 

following forms: 

Cp)ß = 0, (49a) 
x 

f(p)ß _ 
,(D 

:d)   3 
>52 

«5a) 

IÖTAT' 
b52 

r(p)3 
yz 

= T (P)ß . T(P)ß = 0j 
xy xz 

(49b) 

(49c) 

in both layers (ß = 1,2).  The displacements may be shown to have the expressions, 

:d) 
u (P)3 _ 

q(D ~(D 
,(1)   53  12 
»13   :(D 

>52 

4» + ~(1)  "12  ~(1) ai   -Jä)a5 
b52 

AT x, (50a) 

r(p)3 
„(1)  n(D 

,(1) _ b53  22 
323 :(D 

352 

Af> + :d) 
:d) 
'22  (1) 
 a :d)   5 
>52 

AT (50b) 
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and 

W^ß = 0. (50c) 

Inserting Eqs. 49a-c into Eq. 39b, one can obtain the stress component 

a™*  as z 

.(p)3 1 + 

<j(D „(1) 
b32  b53 
~(D „(1) 
b52 b33 

41) + s(1) ;(1) 
32 a5     (1) 
~(D      3 
b52 

AT 

>33 

(51) 

Hence, the following relationship for A„ may be established: 

a(p) dx dy = 4 
z 

1 + 

„(1) «,(1) 
b32  b53 
~(D «,(1) 
b52 b33 

b^ + h2) A^
1} 

+ 4 
S(1) a(1) b32 a5     (1) 

~(1)     a3 
b52 

AT 
Ll   '   LL2'     (1) 

b33 

b(h, + h„) (52) 

The contribution from the homogeneous solution may be obtained from Eqs. 28 

and 39a by 

a(h) dx dy = I  d 
m 

Y  ' m 3m 
(53) 

where 

'3m 
fQ (x,y; 6 ) dx dy. 

J J   3m     m 
(54) 

Substituting Eqs. 52 and 53 into Eqs. 19 and solving the resulting equation 

for A„ in terms of d give 
3 m 

41) = e + I  d e^' 3     o  u    m 3m 
m 

(55) 

where e„ are known constants obtained by integrating associated eigenfunctions, 

and e , from the particular solution, 
o 
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The boundary conditions on (9B - 9B ) suggest, by using Eqs. 28, 38, 43, 
r 

44, 49 and 50, the following relationships for determining the constants d : 
m 

S(1)       a(1) 

£ d
m 

f2m
)(x>hr V - my 4X) + rfiyAT* (56a) 

S
52       S52 

K^'V V =°* (56b) 
m 

I  d fp^Cx.h,; 6 ) = 0, (56c) L    m 6m    1  nr    ' v  ' 
m 

T d hJ2)(x,-h.;6J = 0, (56d) u    m lm v ' 2'  m'    » 
m 

K^m^'-VV = °' <56e> 
m 

Kh3m)(x>-VV=0' (56f) 
m 

and 

I d h^b.y; 6 ) = 0, (56g) 
m im      m 

m 

I  d h(^(b,y; 6 )  =0, (ß = 1,2) (56h) 
m /i      m 

m 

2dmh3m(b'" 6m> = °> (56i) 

where h.. denote differentiated forms of g.. according to Eqs. 43 and 44 with 

the origin of " the Cartesian coordinates being transferred to the left 

free edge (Fig. 2).  The boundary conditions shown in Eqs. 56a-i are matched 

by a boundary collocation method, using the eigenfunctions in Eq. 28.  The 

constants d are then evaluated by satisfying these conditions at a given 
m 

number of selected collocation stations.  Accuracy and convergence of 

solutions and effects of collocation points along the boundaries are 
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reported elsewhere [9].  For the numerical results reported in this paper, 

63 terms in the eigenfunction series and 74 collocation stations along the 

boundaries were used to ensure the accuracy and convergence of the solutions 

[9]. 

In what follows, laminate thermoelasticity solutions determined from 

the current eigenfunction expansion method are presented first and compared 

with existing approximate numerical solutions available in the literature. 

Detailed results characterizing the thermal boundary-layer field in the 

symmetric angle-ply composites with various lamination variables are given 

also. 

4.2 Ifrermal Boundary-Layer Stress Distribution 

Distributions of the in-plane and interlaminar thermal stresses, a   , 

T  , a    and x  , along the ply interface of a [450/-45°/-45°/45°] graphite- 
xz  y     yz 

epoxy laminate are shown in a semi-logarithmic plot in Fig. 3.  Dotted lines 

in the figure represent the result given in [3] by using constant-strain tri- 

angular elements (CST) in a finite-element procedure.  Solid lines denote the 

present laminate thermoelasticity solution with free-edge stress singularity 

being included.  The two solutions are in good agreement in the region away 

from the laminate boundary.  The in-plane stresses, a    and x  , in the region 

away from the edge are found to be relatively constant and to recover to more 

or less what classical lamination theory (CLT) predicts.  (Based on the 

classical lamination theory, the only stress induced by a unit change of 

temperature in the [±45]  graphite-epoxy composite is a constant in-plane 

shear stress x° =28.8 psi/°F.)  As the edge is approached, the difference 
xz 

becomes gradually appreciable due to the presence of the stress singularity, 

which was not included in the previous approximate numerical solution.  As 
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will be shown later, within the boundary-layer region the stress field is 

completely governed by the singular terms in the stress solution, and the 

interlaminar stress increases very rapidly. In fact, the interlaminar stress 

is much higher than the in-plane stress component as the edge of the 

laminate is infinitesmally approached.  Thus thermally-induced deformation 

and failure may be dominated by the interlaminar stresses. 

4.3 Stress Singularity in Thermal Boundary-Layer Field 

Since the stress and strain fields within the boundary-layer region are 

governed by the singular terms in the present laminate thermoelasticity solu- 

tion, theoretically, the thermally induced stresses determined from the solution 

are unbounded at the intersection of the ply interface and the laminate edge. 

Thus the near-field stress may be expressed in a general form as 

3 

o.  = I 
1  k=l 

6i        -61 
lk k    i(k+3) k 

+ 0(higher-order, non-singular terms) 

(i=l,2,3,...,6) , (57) 

where Z and Z have their origin at the intersection of the ply interface and 

the edge of the laminate (Fig. 2); 6 is the order of the thermal boundary- 

layer stress singularity which is the smallest eigenvalue satisfying 

0 > Re[6 ] > -1 (58) 

among all the <S determined from the characteristic equation [9] in solving 

for the homogeneous solution of the governing partial differential equations. 

The order of the boundary-layer stress singularity is noted [9] to depend 

only upon lamina constitutive properties and fiber orientations of the adjacent 

plies.  Numerical results of the first four nonzero eigenvalues 6  for sym- 

metric angle-ply [O/-0/-0/O] graphite-epoxy laminates are given in Table 1. 
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Note that S    corresponds to the order of boundary-layer stress singularity 

and that zero and intergers, n, are always eigenvalues for the problem.  In 

this composite system, 6 has a value which is rather weak as compared with 

other typical singular stress problems such as an elastic crack problem. 

Among various 0 studied, it appears that the [±51°]  graphite-epoxy laminate 

has the strongest stress singularity [9]. 

4.4 Thermal Boundary-Layer Stress Intensity Factors 

For a composite laminate with given fiber orientations, the coefficients 

of the singular terms in Eq. 57 characterize amplitudes of the thermal stress 

and strain in the boundary-layer region.  Because the boundary-layer stresses 

are most crucial along the ply interface, i.e., the x-axis, and become singular 

at the interface/edge intersection, it is possible to define the amplitudes 

of the singular thermal boundary-layer stresses by 

-6i 
K. = lim x ia. (i=l,2,3,...,6). (59) 
1  x+0     1 

The K. are dependent upon geometric variables of the composite (e.g., ply 

thickness, number of layers), lamination parameters (e.g., fiber orientation, 

stacking sequence), and mechanical and thermal loading conditions.  The 

fundamental structure of the thermal boundary-layer stress solution shown 

in Eqs. 57 and 59 resembles that of an elastic crack problem (except that 6 

has a value of -0.5 in the crack-tip stress field).  Also, the nature of K. 

is similar to the so-called crack-tip stress intensity factors in linear 

elastic fracture mechanics.  Thus, in this context, it may be appropriate to 

denote K. as "thermal boundary-layer stress intensity factors" or "thermal 

free-edge stress intensity factors" for the composite laminate.  Values of 

K. for the [6/-0/-6/O] graphite-epoxy composite with all laminae being of 
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equal thicknesses under unit thermal loading are determined in Table 2, in 

which K. carry the unit of [psi-in.] 

The K. associated with the interlaminar stresses are found, in general, 

significantly larger than those associated with the in-plane stress components. 

The dominance of the interlaminar thermal stresses a    and T  in the boundary- 
y   yz 

layer region shown in Fig. 3 is clearly illustrated by the high values of K„ 

and K,, which are, in fact, one or two orders of magnitude higher than the K. 

associated with a  , a    and T  for all 6 studied.  The high negative value of x  z     xz 

K„ indicates that a large compressive interlaminar normal stress a is 

developed near the edge. Note that K, is found to vanish for all angle-ply 

[±9]  composite laminates, due to the symmetry of ply orientations and traction- 

free edge conditions. 

4.5 Through-Thickness Distribution of Thermal Boundary-Layer Stresses 

The unique features of the thermal boundary-layer effect are further 

illustrated by through-the-thickness distributions of in-plane and interlaminar 

thermal stresses near the laminate boundary.  The in-plane thermal stress a 

in the thickness direction at different distances away from the edge are shown 

in Fig. 4.  The current solution is in agreement with previous results [3] 

that a    is compressive in the most part of the section near the laminate 

boundary except for the region closest to the ply interface where boundary- 

layer stress singularity dominates.  Through-the-thickness distributions of 

the most dominant thermal interlaminar stress T  are given in Fig. 5.  The yz 

gradient of T  in the y-direction increases rapidly as the laminate edge is 

approached.  Again the laminate elasticity solution in the boundary-layer 

region differs from the approximate solution [3] near the interface but in 

in good agreement in the far field.  The next two figures (Figs. 6 and 7) 
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provide information on through-the-thickness distributions of thermal inter- 

laminar shear and normal stresses, T  and a   , in the [450/-45°/-450/45°] 

graphite-epoxy laminate.  The T  is found to change significantly with the 

thickness coordinate, alters its sign across the interface, and reaches a 

maximum value at a small distance y away from the interface.  Within the 

boundary-layer region, T  becomes very small along the interface and vanishes 

identically at the laminate boundary as envidenced by Kg = 0.  The distribution 

of a at several distances near the boundary of the laminate is shown in 
y 

Fig. 7.  At any given x/b, a    is generally very small at a distance y away 

from the interface, and reaches a higher level as the interface y = h is 

approached.  As one moves towards the edge, the interlaminar normal stress 

becomes very significant in compression.  As x -*- 0 and y -> h the stress 

solution becomes unbounded due to the stress singularity at the intersection 

point. 

4.6 Thermal Boundary-Layer Width 

The rapid increase of thermal stress has been observed to be restricted 

to within a very localized region near the edge of the laminate—the so-called 

"thermal boundary-layer width." The thermal stresses developed in the 

boundary-layer region are inherently three-dimensional and cannot be determined 

by classical lamination theory.  The singular nature and the extent of pertur- 

bation of the thermal boundary stress are considered to be of vital importance 

in controlling initiation of interlaminar fracture (or delamination) and 

strength degradation.  The extent of perturbation of the laminate thermal 

stress field can be characterized by the boundary-layer width (or thickness), B. 

Pipes, et al. [10]  defined  the boundary-layer thickness as the distance 

from the edge, at which the interlaminar stress x      is about 3 per cent of 
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the value calculated at the intersection of the ply interface and the edge of 

the laminate.  The validity of this definition is somewhat questionable 

because the interlaminar stresses are singular at this point.  In this 

study an alternative definition of the boundary-layer width is proposed on 

the basis of the strain energy density distribution in the composite laminate. 

The strain energy density distributions E(x,y) along the interface of 

the [0/-e/-8/6] graphite-epoxy laminates are shown in Fig. 8.  The strain 

energy density remains relatively constant in the far field where classical 

lamination theory holds, and increases drastically by an order of magnitude 

as the edge is approached.  In this paper, the boundary-layer width B in a 

composite laminate is defined as the distance away from the edge where the 

strain energy density along the interface is three per cent higher than the 

nominal value E obtained in the far field.  In general, E(B,h+) differs 

slightly from E(B,h ) due to the discontinuous in-plane stress components 

at y = h and h ; thus, an average value of B is designated as the width of 

the boundary-layer region.  Based on this definition, values of B/W for 

[9/-e/-e/0] graphite-epoxy laminates are evaluated and shown in Fig. 9 

It is obvious from the figure that the [45°/-45°/-450/45°] graphite-epoxy 

laminate has a higher value of B/W than those composites with other fiber 

orientations.  As 9 changes towards either direction, B/W decreases rapidly. 

When 9 has an angle of [±0°] or [±90°], B/W vanishes identically indicating 

that there is no boundary-layer effect in these cases since the two adjacent 

plies are identical. 

4.7 Effects of Fiber Orientation 

Effects of fiber orientation on the thermal boundary-layer response in 

[Ö/-9/-9/9] graphite-epoxy laminates are best illustrated by boundary-layer 



28 

thermal stresses along 8/-8 ply Interface.  The thermal stresses are observed 

to be significantly affected by the alternation of fiber orientation.  Figures 

10 and 11 depict the distributions of thermal interlaminar shear stresses, T 
'  xy 

and T  , along y = h.  The T  is relatively small for all fiber orientations 

studied, and the change of fiber orientation only alters the amplitude of the 

interlaminar shear stress slightly.  The T  reaches its maximum before it 
xy 

vanishes at the laminate boundary, where traction-free boundary conditions 

are satisfied exactly.  The other thermal interlaminar shear component T  is 

more significant in the boundary-layer region than T  .  The T  has a higher 

value along the interface of the [45°/-45°/-450/450] graphite-epoxy laminate 

than those in other ply ocnfigurations due to the higher value of 6- .  As is 

expected, the interlaminar shear stress becomes unbounded as the laminate 

boundary is approached due to the stress singularity.  As 8 moves towards 

either side, the amplitude of the interlaminar shear stress decreases.  The 

distribution of interlaminar normal stress a    along the interface of angle-ply 

laminates with different 8 is shown in Fig. 12.  The a    is found to be 
y 

vanishingly small in the far field.  It is small in tension first, then 

changes its sign, and becomes compressive as the free edge is approached. 

Like the interlaminar shear stress, a    becomes unbounded at the free edge (i.e. 

at x = b and y = h) and is significantly only within the boundary-layer region. 

In Fig. 13, distributions of in-plane thermal stress a    in [8/-Q/-0/8] 

graphite-epoxy are given.  The laminate thermoelasticity solution reveals 

that a    has a very small value in the far field, and remains relatively 

constant before rapid increase in its magnitude, as the laminate boundary 

is approached.  This is apparently different from the prediction of classical 

lamination theory, which suggests that, in the symmetric angle-ply 

[8/-8/-6/6] composite laminate, the in-plane thermal stress a vanishes 
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throughout the composite. At the intersection of the free edge and ply 

interface, again a    has an unbounded value due to the stress singularity 

at that point.  In the boundary-layer region, a    along the interface in the 

[±45]  laminate is found to have a higher value than in the composites with 

other ply configurations. As 9 changes from 45°, the magnitude of a    de- 

creases appreciably.  In fact, the results shown in Fig. 13 indicate that 0 

becomes negligibly small for the cases with 9 > 75°. 

4.8 Effects of Relative Ply Thickness 

Another important laminate variable investigated in this study is the 

effect of ply thickness or volume of the layer that is stressed inter- 

laminar ly, since transverse deformation and failure in composites are affected 

significantly by lateral constraints in the laminates.  It has been found 

that deformation and fracture in certain composite systems change significant- 

ly with the ply thickness while stacking sequence remains the same.  In 

this paper,' influences of ply thickness on the thermal boundary-layer stress 

in [450/-45°/-45°/45°] graphite-epoxy laminate with various ^/W are examined 

(W being kept constant). Following the aforementioned analytical procedure 

and solution scheme, a parametric study on thermal boundary-layer response in 

the composite laminates with various ply thicknesses t^/W has been conducted. 

Numerical results showing the effect of h /W on thermal boundary-layer 

stress intensity factors are given in Table 3.  The results indicate that, 

for a given laminate configuration and fiber orientation, the change of h^/W 

does not alter the thermal stress singularity but does affect thermal boundary- 

layer stress intensity factors appreciably.  The composite laminate with 

h-/W - 0.4 ^ 0.5, seems to have smaller values of K. than other cases studied. 
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As h /W approaches 0 or 1, the boundary-layer stress intensity factors reach 

their maxima.  The higher values of K. developed in the composite by changing 

ply thickness h.. /W provide an important basis for evaluation of initiation of 

transverse cracking and interply delamination in composite laminates. 
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5.  SUMMARY AND CONCLUSIONS 

A study of thermal boundary-layer stresses in composite laminates has 

been presented.  Formulation of the problem is based on the theory of 

anisotropic laminate thermoelasticity.  With the aid of Lekhnitskii's 

complex-variable stress functions, an eigenfunction expansion method is 

used to establish a system of coupled, governing partial differential 

equations for the problem.  Numerical results for symmetric angle-ply 

[6/-e/-0/0] graphite-epoxy laminates are obtained.  Effects of lamination 

and geometric variables on the thermal boundary-layer stress singularity 

and distributions are studied.  Based on the information discussed in 

the previous sections, the following conclusions may be reached: 

1. Thermal stresses in the boundary-layer region of a composite 

laminate are inherently three dimensional in nature.  They 

cannot be calculated by the classical lamination theory, but 

can be determined explicitly by the current approach. 

2. The thermal stress field in the boundary-layer region is 

singular in general.  By using an eigenfunction expansion 

method, one can determine the order of the boundary-layer 

stress singularity by solving the characteristic transcendental 

equation obtained from the homogeneous solution.  The order 

of the boundary-layer stress singularity depends on anisotropic 

thermoelastic properties of adjacent plies in the composite. 

3.  The boundary-layer thermal stress field may be characterized by 

"thermal boundary-layer stress intensity factors" or "thermal 

free-edge stress intensity factors." The K. are functions of 

anisotropic thermoelastic constants of laminae, ply orientation 
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and laminate geometry, and may be used to evaluate strength 

degradation and initiation of interlaminar fracture 

(delamination) and transverse cracking.  Their values can 

be determined by various methods such as the boundary 

collocation method and the finite element method. 

Thermal boundary-layer thickness which characterizes the domain 

where classical lamination theory does not hold can be 

determined explicitly by considering the change of strain 

energy density along the ply interface.  The thermal boundary- 

layer thickness depends on lamination variables, geometric 

parameters, thermal loading conditions and thermoelastic ply 

properties.  In [±0]  graphite-epoxy composites, the case of 

9 = 45° possesses a higher thermal boundary-layer thickness 

than those of other fiber orientations studied. 

In comparison with previous approximate solutions, good 

agreement in the far field is observed, but appreciable 

discrepancy near the laminate boundary occurs. <The difference 

is attributed to the fact that, in the boundary-layer region, 

the thermoelastic solution is completely governed by the 

singular terms which previous approximate solutions failed 

to include. 

The current method of approach is also valid for asymmetric 

composite laminates, since the bending, twisting and rotational 

components of deformation are included in the formulation. 
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Table 1 

First four nonzero eigenvalues for thermal boundary-layer stresses 
in symmetric angle-ply [0/-8/-6/6] graphite-epoxy laminates* 

6° 61 62,3 64 

15° -0.64322 E-3 0.99670 ± 0.04191 i 1. 

30° -0.11658 E-l 0.95521 ± 0.15271 i 1. 

45° -0.25575 E-l 0.88147 ± 0.23401 i 1. 

60° -0.23346 E-l 0.83074 ± 0.27138 i 1. 

75° -0.89444 E-2 0.86469 ± 0.25007 i 1. 

*6 corresponding to the strength of thermal boundary-layer stress 
singularity. 
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Table 2 

Thermal boundary-layer stress intensity factors, K^, along the 
interface of [G/-0/-0/6] graphite-epoxy composite laminates*"*" 

6          K,         K.          K„          K. K_     K, 
12          3          4 5      6 

15°    4.5996 E-l -3.8534 E 2 -3.7120 E 1 -5.2624 E 3 8.0636 E 0  0 

30°    4.7031 E 0 -1.6466 E 2  8.6078 E 0 -5.7404 E 2 2.2357 El  0 

45°    1.4546 E 1 -1.9130 E 2 -7.4958 E-l -4.1747 E 2 3.6662 E 1  0 

60°    1.3746 E 1 -1.7881 E 2 -2.2426 E 1 -3.7858 E 2 2.4394 El  0 

75°    4.5752 E 0 -1.5101 E 2 -2.9205 E 1 -4.9611 E 2 8.5717 E 0  0 

*h = h2 = h, b = 8h 

"^Values of K. are per °F change 
l 
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Table 3 

Lamina thickness/volume effects on thermal boundary-layer stress 
intensity factors for [450/-45°/-450/45°] Graphite-^Epoxy Laminates*"1" 

h,/W      Kn K„          K„          K.         Kc K,. 
i         i I                           3                           4          5 6 

0.2 1.4870 E 1 -1.9554 E 2 -7.6620 E-l -4.2672 E 2 3.7475 E 1 0 

0.4 1.4509 E 1 -1.9079 E 2 -7.4759 E-l -4.1636 E 2 3.6565 El 0 

0.5 1.4548 E 1 -1.9130 E 2 -7.4958 E-l -4.1747 E 2 3.6662 E 1 0 

0.6 1.4707 E 1 -1.9339 E 2 -7.5780 E-l -4.2204 E 2 3.7064 El 0 

0.8 1.5580 E 1 -2.0487 E 2 -8.0275 E-l -4.4708 E 2 3.9263 El 0 

*2b = 8W where W = constant = half laminate thickness 

^Values of K. are per °F change 
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STRESS OZ  IN [45°/-450/-45O/45°]  GRAPHITE-EPOXY COMPOSITE 

(h1 =h2=h, b=8h) 
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FIG, Ii THERMAL INTERLAMINAR SHEAR STRESS xyz ALONG INTER- 

FACE IN [e/-e/-e/e] GRAPHITE-EPOXY COMPOSITES 
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FIG. 12   THERMAL INTERLAMINAR NORMAL STRESS ay ALONG INTER- 

FACE IN [e/-e/-e/e] GRAPHITE-EPOXY COMPOSITES 
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